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Abstract
Expansions in series of Coulomb and hypergeometric functions for the solutions
of the generalized spheroidal wave equations (GSWEs) are analysed and written
together in pairs. Each pair consists of a solution in series of hypergeometric
functions and another in series of Coulomb wavefunctions and has the same
recurrence relations for the series coefficients, but the solutions inside it present
different radii of convergence. Expansions without a phase parameter are
derived by truncating the series with a phase parameter. For the Whittaker–
Hill equation, solutions are found by treating that equation as a particular
case of GSWE while, for the confluent GSWE, solutions, with and without
a phase parameter, are given as pairs of series of Coulomb wavefunctions.
Amongst the applications there are equations for the time dependence of Dirac
test fields in some nonflat Friedmann–Robertson–Walker spacetimes, the radial
Schrödinger equation for an electron in the field of two Coulombian centres and
the Schrödinger equation for the Razavy-type quasi-exactly solvable potentials.
For these problems it is possible to find wavefunctions in terms of infinite series,
regular and convergent over the entire range of the independent variable, by
matching expansions belonging to one or more of the above pairs. The infinite-
series solutions for the Razavy-type potentials, in addition to the polynomial
ones, suggest that the whole energy spectra may be determined without
appealing to perturbation theory or semi-classical methods of approximation.

PACS numbers: 02.30.Jr, 02.30.Gp, 03.65.Db, 03.65.Pm

1. Generalities

In this paper we deal with solutions to the generalized spheroidal wave equations (GSWEs)
and their particular cases. We also discuss some possible applications of the results found
here. Before outlining what we are doing, we present some ideas concerning GSWEs which
are used throughout the paper.
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For definiteness, we adopt the Leaver version

x(x − x0)
d2U

dx2
+ (B1 + B2x)

dU

dx
+ [B3 − 2ωη(x − x0) + ω2x(x − x0)]U = 0, (1)

for the GSWE [1], where x0, Bi , η and ω are constants. If η = 0 and x0 �= 0, then we have the
ordinary spheroidal wave equation. On the other hand, supposing that

B1 = −x0/2, B2 = 1, x = x0 cos2(u) (2)

in equation (1), we find

d2U

du2
+ [−4B3 − 4ηωx0 + 4ηωx0 cos(2u) + ω2x2

0 sin2(2u)]U = 0, (3)

which is the Whittaker–Hill equation (WHE) [2]. Since the WHE has just three parameters,
we may absorb x0 into ω. A third particular case, the confluent GSWE, occurs when x0 = 0

x2 d2U

dx2
+ (B1 + B2x)

dU

dx
+ [B3 − 2ωηx + ω2x2]U = 0, (4)

with both the singular points x = 0 and x = ∞ being irregular [1].
As usual, we consider only solutions given as series of special functions with three-term

recurrence relations for the series coefficients. If there are no free constants in the GSWE, the
series convergence demands the presence of a phase parameter ν which must be determined
from a characteristic equation ensuing from the recurrence relations. Series expansions with
a phase parameter are double-sided with the summation index n running from −∞ to ∞.
However, the GSWEs may also admit solutions in finite series. For the WHE these solutions
are known as Ince’s polynomials [3], whereas for the general case they can be called Heun’s
polynomials, since the GSWE is a confluent Heun equation and the confluent GSWE is a
double confluent Heun equation [4]. Furthermore, from a known solution S(x) with a phase
parameter ν

S(x) := U(B1, B2, B3; ν, x0, ω, η; x), (5)

(where ‘:=’ means ‘equal by definition’) it may be possible to obtain new solutions by means
of one or more of the following transformation rules [4, 5]—T1, T2, T3—

T1S(x) = x1+B1/x0U(C1, C2, C3; ν1, x0, ω, η; x), (6a)

T2S(x) = (x − x0)
1−B2−B1/x0U(B1,D2,D3; ν2, x0, ω, η; x), (6b)

where

C1 := −B1 − 2x0, C2 := 2 + B2 +
2B1

x0
,

C3 := B3 +

(
1 +

B1

x0

)(
B2 +

B1

x0

)
,

(7a)

D2 := 2− B2 − 2B1

x0
, D3 := B3 +

B1

x0

(
B1

x0
+ B2 − 1

)
. (7b)

These rules are valid only for x0 �= 0 and they can be demonstrated by setting

U = x1+B1/x0f1, U = (x − x0)
1−B2−B1/x0f2

into equation (1). They must be applied to general solutions of the GSWE in which no values
are specified for the parameters; it would make no sense to try to apply them to a solution of
the WHE, for instance. A further rule, now valid also for x0 = 0, is

T3S(x) = U(B1, B2, B3; ν3, x0,−ω,−η; x), ∀x0, (8)
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in which it is assumed that we have to change the sign of (η, ω) only where these quantities
appear explicitly, preserving the expressions for the other constants. In effect, the solutions
regarded here will have the forms U = eiωxg and e−iωxh and thereupon we get

x(x − x0)
d2g

dx2
+ [B1 + B2x + 2iωx(x − x0)]

dg

dx
+ [B3 + iωB1 + iωB2x − 2ωη(x − x0)]g = 0,

x(x − x0)
d2h

dx2
+ [B1 + B2x − 2iωx(x − x0)]

dh

dx
+ [B3 − iωB1 − iωB2x − 2ωη(x − x0)]h = 0,

for g and h with the sole changes stated above. If we do not take into account this remark, we
would get wrong results for the solutions of the Teukolsky equations, for example, where the
constants depend on η and ω (see, for example, [1]). With this proviso, the rule T3 will not be
used explicitly and it is put here just to remind that for each written solution, another solution
exists. Moreover, these rules in general also transform the phase parameter, although that will
not happen for the solutions discussed here.

With regard to the confluent GSWE, for which T1 and T2 do not work, we have the rules
t1 and t2 [1, 4]

t1S(x) = eiωx+B1/(2x)x−iη−B2/2U(B ′1, B
′
2, B

′
3;ω′, η′;ϑ), (9a)

t2S(x) = eB1/xx2−B2U(B1, B2, B3;ω, η; x), (9b)

where

B ′1 = ωB1, B ′2 = 2 + 2iη, B ′3 = B3 −
(
B2

2
+ iη

)(
B2

2
− iη − 1

)
,

ω′ = 1, iη′ = B2

2
− 1, ϑ = iB1

2x
,

(10a)

and

B1 = −B1, B2 = 4− B2, B3 = B3 + 2− B2. (10b)

An additional procedure, which is used to obtain solutions without phase parameters out
of those with phase parameters, consists in truncating the series with the phase parameter, that
is, restricting the summation index n to non-negative values. In this process ν will become
determined regardless of the characteristic equation and, consequently, the truncation is allowed
only if there is some arbitrary constant in the differential equation. In general we obtain more
than one expression for ν. Besides this, once we have obtained one solution without a phase
parameter, new ones can be generated from the transformation rules.

All the facts exposed above are well known in the theory of Heun’s differential equations
of which the GSWEs are particular cases, as mentioned before. We use these to obtain explicit
solutions to the GSWEs in series of Gauss hypergeometric and Coulomb wavefunctions. We do
not give just one solution of type (5) but also the solutions arising from it via the transformations
rules. This procedure requires some more space but it is necessary if we want to use the
solutions to solve particular equations. On the other hand, we pay special attention to the
solution truncation for, in general, this process leads to more than one (three in our case)
possible form to the recurrence relations for the series coefficients.

Firstly, in section 2, we deal with the solutions with phase parameters. The expansions in
hypergeometric functions are taken from [6] with minor modifications; the series in Coulomb
wavefunctions are the Leaver solutions [1] and those which come from them by rule T2. The
solutions are written as two pairs, each pair exhibiting the same series coefficient and containing
an expansion in hypergeometric functions and another in Coulomb functions. For the WHE
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one pair is even with respect to the variable u and the other is odd. The idea of working
simultaneously with these two types of expansions appears in Otchik [7], who proposed to
match them in order to solve the radial Teukolsky equations (see also [8–11]). Therefore, this
section can be seen as a transposition of Otchik’s approach to other problems described by
non-confluent GSWEs. Actually, we find that our results may be used to obtain solutions to the
time dependence of massive-Dirac test fields in radiation-dominated Friedmann–Robertson–
Walker (FRW) spacetimes.

In section 3.1, the solutions found in section 2 are truncated. This provides three values
for ν in each pair of solutions. We select two of them and keep four pairs without phase
parameters. As an application we examine the solutions of the radial Schrödinger equation
for an electron in the field of two Coulombian centres (the two-centre problem) and conclude
that it is possible to construct solutions which are regular over the entire range of the radial
coordinate by matching expansions in hypergeometric functions with expansions in Coulomb
wavefunctions. This procedure offers the advantages of not presenting a phase parameter to be
interpreted, and of operating with one-sided series. A new solution to the angular equation is
also found. In section 3.2 we regard the case in which B2 = 1 and B1/x0 = −1/2 (here called
Whittaker–Hill-type) and find that for the WHE, properly, the expansions in hypergeometric
functions coincide with the four Arscott expansions in trigonometric functions [2] but, now, for
each of them we have a partner in series of Coulomb functions. This fact enables us to match
solutions of a given pair to obtain the complete energy spectrum for the Schrödinger equation
with quasi-exactly solvable (QES) Razavy-type potentials without the need of perturbation
theory or semi-classical methods of approximations.

In section 4 the Leaver solutions in series of Coulomb functions to the confluent GSWE
are duplicated by the rule t2. We find that such expansions may be used to obtain solutions
for the time dependence of massive-Dirac test fields in dust-dominated FRW spacetimes.
The truncated expansions are applied to the Schrödinger equation with asymmetric double-
Morse potentials. For QES potentials we obtain polynomial solutions. In section 5, there are
concluding remarks and the appendix shows us how to obtain the the recurrence relations for
the truncated solutions.

2. Solutions with phase parameters

By Uν
1 and Uν

2 we denote the two expansions in series of hypergeometric functions and by Ũ ν
1

and Ũ ν
2 the two expansions in series of Coulomb wavefunctions. The superscript ν indicates

that they depend on a phase parameter ν. By demanding invariance of solutions under the
operations implied by rules T1 and T2, we get Ũ ν

2 as a new expansion resulting from the Leaver
one, Ũ ν

1 . However, by requiring that the series coefficients for Uν
1 and Uν

2 are identical to
those which appear in Ũ ν

1 and Ũ ν
2 , we are compelled to redefine the phase parameters of the

original expansions in hypergeometric functions. This gives the two pairs of solutions (Uν
1 ,

Ũ ν
1 ) and (Uν

2 , Ũ ν
2 ), each with the same series coefficients. We first give the general solutions,

then we restrict these to Whittaker–Hill-type equations and finally discuss the Dirac equation
for radiation-dominated FRW backgrounds.

2.1. General case

The expansions in series of Coulomb wavefunctions are written explicitly as series of the regular
(or Kummer) and irregular (or Tricomi) confluent hypergeometric functions M(a, b; z) and
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U(a, b, z), respectively, rather than in terms of regular and irregular Coulomb wavefunctions
Fn+ν and Gn+ν . As a matter of fact we use M̃(a, b; z)

M̃(a, b; z) := �(b − a)

�(b)
M(a, b; z) = �(b − a)

�(b)

(
1 +

a

b
z +

a(a + 1)

2!b(b + 1)
z2 + · · ·

)
(11a)

instead of M(a, b; z). If, for brevity, we define F(a, b; z) as

F(an, bn; z) := U(an, bn; z) or (−1)nM̃(an, bn; z), (11b)

the first pair of solutions assumes the form

Uν
1 = eiωx

∞∑
n=−∞

bnF

(
B2

2
− n− ν − 1, n + ν +

B2

2
;B2 +

B1

x0
; x0 − x

x0

)
,

Ũ ν
1 = eiωxxν+1−(B2/2)

∞∑
n=−∞

bn(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx),

(12a)

with the following recurrence relations for the coefficients bn

αnbn+1 + βnbn + γnbn−1 = 0, (12b)

where

αn = iωx0
(n + ν + 2− (B2/2))(n + ν + 1− (B2/2)− (B1/x0))(n + ν + 1− iη)

2(n + ν + 1)(n + ν + 3/2)
,

βn = −B3 − ηωx0 −
(
n + ν + 1− B2

2

)(
n + ν +

B2

2

)

− ηωx0((B2/2)− 1)((B2/2) + (B1/x0))

(n + ν)(n + ν + 1)
,

γn = −iωx0
(n + ν + (B2/2)− 1)(n + ν + (B2/2) + (B1/x0))(n + ν + iη)

2(n + ν − 1/2)(n + ν)
.

(12c)

The phase parameter ν may be determined from a characteristic equation given as a sum of
two infinite continued fractions, namely

β0 = α−1γ0

β−1−
α−2γ−1

β−2−
α−3γ−2

β−3− + · · · + α0γ1

β1−
α1γ2

β2−
α2γ3

β3− · · · . (12d)

Using the rule T2 we obtain the second pair of solutions

Uν
2 = f

∞∑
n=−∞

b′nF
(
−n− ν − B2

2
− B1

x0
, n + ν + 1− B2

2
− B1

x0
; 2− B2 − B1

x0
; x0 − x

x0

)
,

Ũ ν
2 = f xν+(B2/2)+(B1/x0)

∞∑
n=−∞

b′n(−2iωx)n F(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx),

(13a)

where

f := eiωx(x − x0)
1−B2−(B1/x0), (13b)

and

α′n = iωx0
(n + ν + 1 + (B2/2) + (B1/x0))(n + ν + (B2/2))(n + ν + 1− iη)

2(n + ν + 1)(n + ν + 3/2)
,

β ′n = βn,

γ ′n = −iωx0
(n + ν − (B2/2)− (B1/x0))(n + ν + 1− (B2/2))(n + ν + iη)

2(n + ν − 1/2)(n + ν)
,

(13c)
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in the recurrence relations

α′nb
′
n+1 + β ′nb

′
n + γ ′nb

′
n−1 = 0.

The characteristic equation is again given by equation (12d) because we have β ′n = βn

and α′nγ
′
n+1 = αnγn+1. Moreover, by applying the rule T1 to (Uν

2 , Ũ
ν
2 ) we return to (Uν

1 , Ũ
ν
1 ),

and thus both sets of solutions are closed under applications of T1 and T2. We also remark that
the above forms for the expansions in Gauss hypergeometric were obtained by accomplishing
the replacements

ν → ν + 1− B2

2
, ν ′ → ν +

B2

2
+
B1

x0
,

into the original solutions of [6]. These substitutions have permitted us to see that both
solutions depend on the same phase parameter ν which, in turn, is the very one that appears in
the expansions Ũ ν

1 and Ũ ν
2 .

The series in terms of Coulomb wavefunctions are convergent for |x| > |x0| [1] while
those in terms of hypergeometric functions do not converge at |x| = ∞. In effect, following
the steps sketched in [6] or [10] we find

lim
n→∞

bn+1Fn+1

bnFn
= lim

n→−∞
bnFn

bn+1Fn+1
= iωx0

2|n|
[

2x

x0
− 1 +

√
4

x2
0

x(x − x0)

]

where Fn := F((B2/2)−n− ν− 1, n+ ν + (B2/2), B2 + (B1/x0); y). Therefore, the ratio test
implies that the expansion Uν

1 converges in any finite region of the complex plane. This is the
same forUν

2 . Note that in the case of polynomial solutions the ratio test becomes meaningless.
It is worth mentioning that the n � 0 part of the expansions in regular confluent

hypergeometric functions is convergent for all values of x [1]. Furthermore, there are some
properties of confluent hypergeometric functions regarding only these functions that are useful
here. Firstly, while M(a, b; 0) = 1, in general U(a, b; z) has a logarithmical behaviour when
z→ 0 [16] and this will make the expansions in irregular confluent hypergeometric functions
inadequate for obtaining polynomial solutions. Secondly, as |z| → ∞ we have [12]

M(a, b; z) =



�(b)

�(a)
ezza−b[1 + O(|z|−1)] (Rz > 0),

�(b)

�(b − a)
(−z)−a[1 + O(|z|−1)] (Rz < 0),

(14)

and we must take these properties into account when we examine the asymptotic behaviour
of solutions. Moreover, if a is a negative integer, M̃(a, b; z) is a polynomial, suggesting that
the expansions in series of regular hypergeometric functions are suitable to obtain polynomial
solutions (i.e., in finite series) as seen in sections 3.2.1 and 4.2.2.

2.2. Limits for Whittaker–Hill-type equations

For B2 = 1, B1 = −x0/2, we define cn by means of b′n = 2(n + ν + 1/2)cn and find that the
recurrence relations for bn and cn become identical. Therefore, we may set cn = bn and then
the solutions acquire the forms

Uν
1 = eiωx

∞∑
n=−∞

bnF

(
−n− ν − 1

2
, n + ν +

1

2
; 1

2
; x0 − x

x0

)
,

Ũ ν
1 = eiωxxν+1/2

∞∑
n=−∞

bn(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx),

(15)
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Uν
2 = eiωx(x − x0)

1/2
∞∑

n=−∞

(
n + ν +

1

2

)
bnF

(
−n− ν, n + ν + 1; 3

2
; x0 − x

x0

)
,

Ũ ν
2 = eiωx(x − x0)

1/2xν
∞∑

n=−∞
(n + ν + 1

2 )bn(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx),

(16)

with the following simplified coefficients in the recurrence relations

αn = iωx0

2
(n + ν + 1− iη),

βn = −B3 − ηωx0 − (n + ν + 1
2 )

2,

γn = − iωx0

2
(n + ν + iη).

(17)

For a WHE we have x = x0 cos2 u, (x0 − x)/x0 = sin2(u) and the hypergeometric functions
in Uν

1 and Uν
2 can be written as trigonometric functions by means of [12]

F(−a, a; 1/2; sin2 u) = cos(2au), F (a, 1− a; 3/2; sin2 u) = sin[(2a − 1)u]

(2a − 1) sin(u)
. (18)

Thus, except for a multiplicative constant, the solutions of the WHE are given by

Uν
1 = e(i/2)ωx0 cos(2u)

∞∑
n=−∞

bn cos[(2n + 2ν + 1)u],

Ũ ν
1 = e(i/2)ωx0 cos(2u)(cos u)2ν+1

∞∑
n=−∞

bn(−2iωx0 cos2 u)n

× F(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx0 cos2 u),

(19)

Uν
2 = e(i/2)ωx0 cos(2u)

∞∑
n=−∞

bn sin[(2n + 2ν + 1)u],

Ũ ν
2 = e(i/2)ωx0 cos(2u)(cos u)2ν sin u

∞∑
n=−∞

(n + ν + 1
2 )bn(−2iωx0 cos2 u)n

× F(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx0 cos2 u),

(20)

where the first pair is constituted by even solutions and the second pair by odd solutions.

2.2.1. Dirac equation in radiation-dominated FRW spacetimes. As an illustration we
consider the Dirac equation (h̄ = c = 1) for test fields with massµ in nonflat FRW spacetimes,
since the equations for the time dependence have no free parameters. The line element in its
conformally static form is

ds2 = [A(τ)]2

[
dτ 2 − dχ2 − sin2(

√
εχ)

ε
(dθ2 + sin2 θ dϕ2)

]
, (21)

where ε = ±1 is the spatial curvature. If the Dirac spinor . is redefined as

/(τ, χ, θ, φ) := A3/2 sin(
√
εχ)
√

sin θ .(τ, χ, θ, φ), (22)

its time dependence is given by [13]

i
dP(τ)

dτ
= σP (τ)− µA(τ)Q(τ),

i
dQ(τ)

dτ
= −σQ(τ)− µA(τ)P (τ),

(23)
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where P and Q are two spinor components and σ is a separation constant. For ε = 1, σ is any
half-integer different from ±1/2 [14] and, for ε = −1, σ is any nonvanishing real number.
On the other hand, taking S = Q− P and T = P + Q, the preceding equations yield[

d

dτ
+ iµA(τ)

]
S(τ) = iσT (τ),[

d

dτ
− iµA(τ)

]
T (τ) = iσS(τ),

(24)

which implies

d2S

dτ 2
+

[
σ 2 + iµ

dA(τ)

dτ
+ µ2A2(τ )

]
S = 0, (25)

T = 1

iσ

[
d

dτ
+ iµA(τ)

]
S. (26)

For radiation-dominated models the scale factor is given by A(τ) = a0 sin(
√
ετ)/
√
ε and so

equation (25) assumes the form

d2S

dτ 2
+ [σ 2 + iµa0 cos(

√
ετ) + εµ2a2

0 sin2(
√
ετ)]S = 0. (27)

This is a WHE with 2u = √ετ and the transformation x = cos2(
√
ετ/2) brings it to Leaver’s

form for the GSWE

x(x − 1)
d2S

dx2
+

(
x − 1

2

)
dS

dx
+

[−ε(σ 2 + iµa0) + 4µ2a2
0x(x − 1)− 2iµa0ε(x − 1)

]
S = 0.

Thus, the parameters appearing in equation (1) can be written as

x0 = 1, B1 = −1/2, B2 = 1,

B3 = −ε(σ 2 + iµa0), ω = ±2µa0, iη = ∓ε/2.

If ε = 1, we have 0 � x � 1 and the solutions must be written in series of trigonometric
functions which are regular and convergent in this interval. The full wavefunctions . will
diverge at the spacetime singular point τ = 0, but this is due to the factor A−(3/2) in
equation (22). For ε = −1, we have 1 � x < ∞ and the solutions may be formed by
matching both solutions in each pair (with F = U ), since at the singular point x = 1 only the
series in hyperbolic functions converge while for x → ∞ only the expansions in Coulomb
wavefunctions converge. The divergence of. at x = 1 results again from the factorA−(3/2)(τ )

and not from divergence in the solutions to the WHE. Note moreover that both signs for (η, ω)
are allowed and thus we may obtain four solutions as required if we want to have a complete
basis for the solutions of Dirac equation (the spatial equations afford only one solution for a
given set of quantum numbers).

There is also a nonsingular spacetime with ε = −1 where we haveB2 = 1 andB1 = −x0/2
but not a WHE. Hence we could use the solutions given by equations (15)–(17). This spacetime
can also be interpreted as a radiation-dominated FRW model with a negative effective pressure.
Its scale factor is A(τ) = a0 cosh τ [15] and therefore

d2S

dτ 2
+ [σ 2 + iµa0 sinh τ + µ2a2

0 cosh2 τ ]S = 0. (28)

This is not a WHE because the sinh and the cosh have interchanged positions and the equation
is not symmetric under τ ↔ −τ . Writing t = a0 sinh τ for the coordinate time dt = A(τ) dτ
and performing the change of variable x = t + ia0 we get the GSWE

x(x − 2ia0)
d2S

dx2
+ (x − ia0)

dS

dx
+ [σ 2 − µa0 + iµ(x − 2ia0) + µ2x(x − 2ia0)]S = 0, (29a)
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and hence

x0 = 2ia0, B1 = −ia0, B2 = 1,
B3 = σ 2 − µa0, ω = ±µ, η = ∓i/2.

(29b)

Again we have to match solutions, since for sinh2 τ � 1 (⇔ |x| � |x0|) only the expansions
in series of hypergeometric functions converge, whereas for τ → ∞ only the expansions in
Coulomb wavefunctions converge.

3. Solutions without phase parameters

Supposing that there is some free parameter in the GSWE, we truncate the solutions with
phase parameters, that is, we take n � 0. Firstly, we present the solutions for the general case
and their possible applications to the angular and radial equations of the two-centre problem.
Then we restrict the results for the case B2 = 1, B1 = −x0/2 and show how these solutions
can be applied to find the wavefunction for the Schrödinger equation with QES Razavy-type
potentials.

3.1. General case

The solutions obtained from the truncation of the expansions given in section 2.1 are displayed
in four pairs denoted by (Ui, Ũi), i = 1, 2, 3, 4. Starting from one pair, the others can be
derived by means of the rules T1 and T2 according to the scheme

(U1, Ũ1)
T1←→ (U2, Ũ2)

T2←→ (U3, Ũ3)
T1←→ (U4, Ũ4)

T2←→ (U1, Ũ1) (30a)

which corresponds to

ν1 = B2

2
− 1

T1←→ ν2 = B1

x0
+
B2

2
T2←→ ν3 = 1− B2

2
T1←→ ν4 = −B1

x0
− B2

2
T2←→ ν1. (30b)

Note that there are solutions with opposite signs for ν; therefore, if in one pair a denominator
of the recurrence relations is zero (integer or half-integer value for ν), in another pair the
denominator is well defined. The recurrence relations and the characteristic equations (for
solutions in infinite series) have one of the three forms given below. The first case (α−1 = 0) is
the general one and the others (α−1 �= 0) may occur only for special values for the parameters.

α0b1 + β0b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0 (n � 1),

}
⇒ β0 = α0γ1

β1−
α1γ2

β2−
α2γ3

β3− · · · (31)

α0b1 + β0b0 = 0,

α1b2 + β1b1 +
[
α−1 + γ1

]
b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0 (n � 2),


⇒ β0 =

α0
[
α−1 + γ1

]
β1−

α1γ2

β2−
α2γ3

β3− · · · (32)

α0b1 +
[
β0 + α−1

]
b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0 (n � 1),

}
⇒ β0 + α−1 = α0γ1

β1−
α1γ2

β2−
α2γ3

β3− · · · . (33)

In each pair the hypergeometric functions can be rewritten as Jacobi’s polynomials P (α,β)
n (z)

by using the formula [16]

F(−n, n + 1 + α + β; 1 + α; y) = n!

(1 + α)n
P (α,β)
n (1− 2y), (34a)
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where (1 + α)n denotes the Pocchammer symbol defined as

(a)n = a(a + 1)(a + 2) · · · (a + n− 1), (a)0 = 1. (34b)

Therefore, the truncated expansions in hypergeometric functions are solutions of the Fackerell–
Crossman type [17]. In fact, the solutions Uν

1 and Uν
2 were obtained in [6] as generalizations

of a Fackerell–Crossman solution which now is recovered together with other solutions. We
first write the four pairs of solutions, relegating their derivations to appendix, and then discuss
some applications. Note that for the truncated solutions we have n � −1 in αn, n � 0 in βn
and n � 1 in γn.

First pair: ν = (B2/2)− 1 in (Uν
1 , Ũ

ν
1 ).

U1 = eiωx
∞∑
n=0

b(1)n F

(
−n, n + B2 − 1;B2 +

B1

x0
; x0 − x

x0

)
,

Ũ1 = eiωx
∞∑
n=0

b(1)n (−2iωx)nF
(
n +

B2

2
+ iη, 2n + B2;−2iωx

)
,

(35a)

α(1)n = iωx0
(n + 1)(n− (B1/x0))(n + (B2/2)− iη)

2(n + (B2/2))(n + (B2/2) + 1/2)
,

β(1)n = −B3 − ηωx0 − n(n + B2 − 1)− ηωx0((B2/2)− 1)((B2/2) + (B1/x0))

(n + (B2/2)− 1)(n + B2/2)
,

γ (1)
n = −iωx0

(n + B2 − 2)(n + B2 + (B1/x0)− 1)(n + (B2/2)− 1 + iη)

2(n + (B2/2)− 3/2)(n + (B2/2)− 1)
.

(35b)

Recurrence relations: if B2 = 1, equation (32); if B2 = 2, equation (33); otherwise,
equation (31).

Second pair: ν = (B2/2) + (B1/x0) in (Uν
1 , Ũ

ν
1 ) or (U1, Ũ1)

T1−→ (U2, Ũ2).

U2 = eiωxx1+(B1/x0)
∞∑
n=0

b(2)n F

(
−n, n + 1 + B2 +

2B1

x0
;B2 +

B1

x0
; x0 − x

x0

)
,

Ũ2 = eiωxx1+(B1/x0)
∞∑
n=0

b(2)n (−2iωx)nF
(
n + 1 + iη +

B2

2
+
B0

x0
, 2n + 2 + B2 +

2B1

x0
;−2iωx

)
,

(36a)

α(2)n = iωx0
(n + 1)(n + 2 + (B1/x0))(n + 1 + (B2/2) + (B1/x0)− iη)

2(n + 1 + (B2/2) + (B1/x0))(n + (3/2) + (B2/2) + (B1/x0))
,

β(2)n = −B3 − ηωx0 −
(
n + 1 +

B1

x0

)(
n + B2 +

B1

x0

)

− ηωx0((B2/2)− 1)((B2/2) + (B1/x0))

(n + (B2/2) + (B1/x0))(n + 1 + (B2/2) + (B1/x0))
,

γ (2)
n = −iωx0

(n + B2 + (B1/x0)− 1)(n + B2 + (2B1/x0))(n + (B2/2) + (B1/x0) + iη)

2(n− (1/2) + (B2/2) + (B1/x0))(n + (B2/2) + (B1/x0))
.

(36b)

Recurrence relations: if (B2/2) + (B1/x0) = 0, equation (33); if (B2/2) + (B1/x0) = −1/2,
equation (32); otherwise, equation (31).
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Third pair: ν = 1− (B2/2) in (Uν
2 , Ũ

ν
2 ) or (U2, Ũ2)

T2−→ (U3, Ũ3).

U3 = eiωx(x − x0)
1−B2−(B1/x0)x1+(B1/x0)

∞∑
n=0

b(3)n F

(
−n, n + 3− B2; 2− B2 − B1

x0
; x0 − x

x0

)
,

Ũ3 = eiωx(x − x0)
1−B2−(B1/x0)x1+(B1/x0)

∞∑
n=0

b(3)n (−2iωx)n

× F
(
n + 2− B2

2
+ iη, 2n + 4− B2;−2iωx

)
,

(37a)

α(3)n = iωx0
(n + 1)(n + 2 + (B1/x0))(n + 2− (B2/2)− iη)

2(n + 2− (B2/2))(n + (5/2)− (B2/2))
,

β(3)n = −B3 − ηωx0 − (n + 1)(n + 2− B2)− ηωx0((B2/2)− 1)((B2/2) + (B1/x0))

(n + 1− (B2/2))(n + 2− (B2/2))
,

γ (3)
n = −iωx0

(n + 2− B2)(n + 1− B2 − (B1/x0))(n + 1− (B2/2) + iη)

2(n + (1/2)− (B2/2))(n + 1− (B2/2))
.

(37b)

Recurrence relations: if B2 = 2, equation (33); if B2 = 3, equations (32); otherwise,
equation (31).

Fourth pair: ν = −(B2/2)− (B1/x0) in (Uν
2 , Ũ

ν
2 ) or (U3, Ũ3)

T1−→ (U4, Ũ4).

U4 = eiωx(x − x0)
1−B2−(B1/x0)

∞∑
n=0

b(4)n F

(
−n, n + 1− B2 − 2B1

x0
; 2− B2 − B1

x0
; x0 − x

x0

)
,

Ũ4 = eiωx(x − x0)
1−B2−(B1/x0)

∞∑
n=0

b(4)n (−2iωx)n

× F
(
n + 1 + iη − B2

2
− B0

x0
, 2n + 2− B2 − 2B1

x0
;−2iωx

)
,

(38a)

α(4)n = iωx0
(n + 1)(n− (B1/x0))(n + 1− (B2/2)− (B1/x0)− iη)

2(n + 1− (B2/2)− (B1/x0))(n + (3/2)− (B2/2)− (B1/x0))
,

β(4)n = −B3 − ηωx0 −
(
n− B1

x0

)(
n− B2 + 1− B1

x0

)

− ηωx0((B2/2)− 1)((B2/2) + (B1/x0))

(n− (B2/2)− (B1/x0))(n + 1− (B2/2)− (B1/x0))
,

γ (4)
n = −iωx0

(n + 1− B2 − (B1/x0))(n− B2 − (2B1/x0))(n− (B2/2)− (B1/x0) + iη)

2(n− (1/2)− (B2/2)− (B1/x0))(n− (B2/2)− (B1/x0))
.

(38b)

Recurrence relations: if (B2/2) + (B1/x0) = 0, equation (33); if (B2/2) + (B1/x0) = 1/2,
equation (32); otherwise, equation (31).

Note that, in each pair, to get the expressions for (αn, βn, γn) the shortest way is to insert the
value for ν into the nontruncated expressions. To obtain (Ui, Ũi) and the recurrence relations
it is easier to use the transformations rules, since this leads the hypergeometric functions to be
already in a polynomial form as above.

3.1.1. The angular and radial equations for the two-centre problem. Now we comment upon
how the earlier solutions can be applied to the angular and radial equations of the two-centre
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problem. Our starting point and conventions are taken from Leaver [1]. The wavefunction ψ
of the time-independent Schrödinger equation has the form

ψ = eimϕR(λ)S(µ), λ := (r1 + r2)/(2a), µ := (r1 − r2)/(2a), (39a)

where m is any integer, r1 and r2 are the distances from the electron to the two centres, and 2a
is the intercentre distance. By performing the changes of variables

S(x) = xm/2(2− x)m/2f −(x), x = µ + 1, (0 � x � 2),
R(x) = xm/2(x − 2)m/2f +(x), x = λ + 1, (x � 2),

(39b)

where S(x) = S(λ), R(x) = R(µ). Leaver obtained GSWEs for f ± with

x0 = 2, ω2 = 2a2E, ωη± = −a(N1 ±N2), B1 = −2(m + 1),
B2 = 2(m + 1), B±3 = ω2 + 2a(N1 ±N2) + m(m + 1)− Alm.

(39c)

Alm is a separation constant, whereas N1 and N2 are related to the values of the two charges.
We are assuming that N1 ± N2 �= 0. To have regular wavefunctions when m � 0 we employ
the solutions (U1, Ũ1) to the GSWE and thus

S1 = eiωxxm/2(2− x)m/2
∞∑
n=0

b−n F
(
−n, n + 2m + 1;m + 1; 1− x

2

)
,

S̃1 = eiωxxm/2(2− x)m/2
∞∑
n=0

b−n (2iωx)nM̃(n + m + 1 + iη−, 2n + 2m + 2;−2iωx),

(40a)

and

R1 = eiωxxm/2(x − 2)m/2
∞∑
n=0

b+
nF

(
−n, n + 2m + 1;m + 1; 1− x

2

)
,

R̃1 = eiωxxm/2(x − 2)m/2
∞∑
n=0

b+
n(−2iωx)nU(n + m + 1 + iη+, 2n + 2m + 2;−2iωx),

(40b)

where the recurrence relations for b±n are given by equation (31) with

α±n = iω
(n + 1)(n + m + 1− iη±)

(n + m + 3/2)
,

β±n = βn = Aml − ω2 −m(m + 1)− n(n + 2m + 1),

γ±n = −iω
(n + 2m)(n + m + iη±)

(n + m− 1/2)
.

(40c)

If we rewrite S1(x) in terms of associated Legendre polynomials, we recognize S1(x) as a
Barber–Hassé solution [18] but now we also have a representation in series of regular Coulomb
wavefunctions (constructed originally for a radial equation). The solution R̃1(x) for the radial
equation is regular and convergent anywhere except at x = 2, the point at which the solution
R1(x) is regular and convergent. Therefore, we can match them in order to get solutions for
the radial wavefunction. This seems to be a possible alternative to the treatment of [19] which
proposes matching expansions in Coulomb wavefunctions (with phase parameters) and Jaffé’s
expansions (without phase parameters), each of them having different characteristic equations.
Furthermore, we can again express R1 as series of associated Legendre polynomials. Then it
becomes obvious that we are matching solutions of Barber–Hassé type (originally conceived
for the angular equation) with solutions in series of Coulomb wavefunctions.

If m � 0, regular and convergent solutions may be formed from the pair (U3, Ũ3) and the
sole difference consists in the change of m by −m in equations (40a)–(40c). Therefore, it is
sufficient to put |m| where we had m in those solutions, but not in equation (39a). We could
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also use the pairs (U2, Ũ2) and (U4, Ũ4) and this would not modify the results. For example,
the angular solutions constructed from (U2, Ũ2) have the form

S2(x) = eiωxx−(m/2)(2− x)m/2
∞∑
n=m

bnF
(
−n, n + 1;m + 1; 1− x

2

)
,

S̃2(x) = eiωxx−(m/2)(2− x)m/2
∞∑
n=m

bn(2iωx)nM̃(n + 1 + iη−, 2n + 2;−2iωx)

where in the recurrence relations for bn, equation (31),

αn = iω
(n + 1−m)(n + 1− iη−)

(n + 3/2)
,

βn = βn = Aml − ω2 −m(m + 1)− (n−m)(n + m + 1),

γn = −iω
(n + m)(n + iη−)

(n− 1/2)
.

These solutions differ from the previous ones inasmuch as the sum begins at n = m by
reason of αm−1 = 0. However, if we perform the substitution n → n + m, use the relation
F(a, b; c; z) = (1− z)c−a−bF (c − a, c − b; c; z) and rename the coefficients, we notice that
these solutions are identical to (S1, S̃1).

We have found two possible representations for the angular dependence of the two-centre
problem. A similar fact occurs with the angular Teukolsky equations. In effect, the angular
wavefunctions has the form

S(x) = x(1/2)|m−s|(2− x)(1/2)|m+s|f (x), 0 � x = 1 + cos θ � 2,

where f (x) obeys a GSWE with B1 = −2|m− s| − 2, B2 = |m + s| + |m− s| + 2, x0 = 2.
The pair of solutions (U1, Ũ1) gives

f1 = eiωx
∞∑
n=0

b (1)
n F

(
−n, n + |m + s| + |m− s| + 1; |m + s| + 1; 2− x

2

)
,

f̃1 = eiωx
∞∑
n=0

b (1)
n (2iωx)nM̃

(
n +
|m + s|

2
+
|m− s|

2

+ 1 + iη, 2n + |m + s| + |m− s| + 2;−2iωx

)
.

(41a)

The first solution is one of the Fackerell–Crossman solutions of the angular Teukolsky equations
and the second is a new representation in series of Coulomb wavefunctions. The second
Fackerell–Crossman solution and its partner can be derived from the above solutions by the
transformation rule T3. Once more we may obtain identical solutions starting from (U2, Ũ2)
but then, similarly to the two-centre problem, the sum will begin at n = |m− s|.

3.2. Limits for Whittaker–Hill-type equations

For this particular case, similar to the case with phase parameters, all the recurrence relations
become simpler since there are no denominators in them. For the WHE the expansions in
series of hypergeometric functions reduce again to series of trigonometric functions which
are not but the Arscott solutions [2]. Note that now each pair presents a different form for
the recurrence relations. The term −α−1 in equation (48c), instead of +α−1, comes from the
redefinition of the series coefficients. The four pairs are written below.
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First pair.

U1 = eiωx
∞∑
n=0

b(1)n F

(
−n, n; 1

2
; x0 − x

x0

)
,

Ũ1 = eiωx
∞∑
n=0

b(1)n (−2iωx)nF(n + 1
2 + iη, 2n + 1;−2iωx),

(42a)

where

α(1)n =
iωx0

2

(
n +

1

2
− iη

)
, β(1)n = −n2 − B3 − ηωx0,

γ (1)
n = −

iωx0

2

(
n− 1

2
+ iη

)
,

(42b)

in the recurrence relations

α0b1 + β0b0 = 0,

α1b2 + β1b1 +
[
α−1 + γ1

]
b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0 (n � 2),



⇒ β0 =

α0
[
α−1 + γ1

]
β1−

α1γ2

β2−
α2γ3

β3− · · · . (42c)

For the WHE we have two even solutions:

U1 = e(iω/2) cos(2u)
∞∑
n=0

b(1)n cos(2nu),

Ũ1 = e(iω/2) cos(2u)
∞∑
n=0

b(1)n (−2iωx0 cos2 u)nF(n + 1
2 + iη, 2n + 1;−2iωx0 cos2 u).

(43)

Second pair.

U2 = eiωxx1/2
∞∑
n=0

b(2)n F

(
−n, n + 1; 1

2
; x0 − x

x0

)
,

Ũ2 = eiωxx1/2
∞∑
n=0

b(2)n (−2iωx)nF(n + iη + 1, 2n + 2;−2iωx),

(44a)

where

2α(2)n

iωx0
= (n + 1− iη), β(2)n = −(n + 1

2 )
2 − B3 − ηωx0,

2γ (2)
n

iωx0
= −(n + iη),

(44b)

in the recurrence relation

α0b1 + [β0 + α−1]b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0 (n � 1),


⇒ β0 + α−1 = α0

β1−
α1γ2

β2−
α2γ3

β3− · · · . (44c)

Again the solutions to the WHE are even:

U2 = e(iω/2) cos(2u)
∞∑
n=0

b(2)n cos[(2n + 1)u],

Ũ2 = e(iω/2) cos(2u) cos u
∞∑
n=0

b(2)n (−2iωx0 cos2 u)nF(n + 1 + iη, 2n + 2;−2iωx0 cos2 u).

(45)
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Third pair.

U3 = eiωx(x − x0)
1/2x1/2

∞∑
n=0

(n + 1)b(3)n F

(
−n, n + 2; 3

2
; x0 − x

x0

)
,

Ũ3 = eiωx(x − x0)
1/2x1/2

∞∑
n=0

(n + 1)b(3)n (−2iωx)nF(n + 3
2 + iη, 2n + 3;−2iωx),

(46a)

2α(3)n

iωx0
=

(
n +

3

2
− iη

)
, β(3)n = −(n + 1)2 − B3 − ηωx0,

2γ (3)
n

iωx0
= −

(
n +

1

2
+ iη

)
.

(46b)

α0b1 + β0b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0 (n � 1),


⇒ β0 = α0γ1

β1−
α1γ2

β2−
α2γ3

β3− · · · . (46c)

Now the solutions to the WHE are odd:

U3 = e(iω/2) cos(2u)
∞∑
n=0

b(3)n sin[(2n + 2)u],

Ũ3 = e(iω/2) cos(2u) sin(2u)
∞∑
n=0

(n + 1)b(3)n (−2iωx0 cos2 u)n

× F(n + 3
2 + iη, 2n + 3;−2iωx0 cos2 u).

(47)

Fourth pair.

U4 = eiωx(x − x0)
1/2

∞∑
n=0

(n + 1
2 )b

(4)
n F (−n, n + 1; 3

2 ; y),

Ũ4 = eiωx(x − x0)
1/2

∞∑
n=0

(n + 1
2 )b

(4)
n (2iωx0y)

nF(n + 1 + iη, 2n + 2;−2iωx),

(48a)

with

α(4)n = α(2)n , β(4)n = β(2)n , γ (4)
n = γ (2)

n , see equation (44b), (48b)

in the recurrence relations (note the minus sign before α−1)

α0b1 + [β0 − α−1]b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0 (n � 1),


⇒ β0 − α−1 = α0

β1−
α1γ2

β2−
α2γ3

β3− · · · . (48c)

Again the solutions to the WHE are odd:

U4 = e(iω/2) cos(2u)
∞∑
n=0

b(4)n sin[(2n + 1)u],

Ũ4 = e(iω/2) cos(2u) sin u
∞∑
n=0

(n + 1
2 )b

(4)
n

× (−2iωx0 cos2 u)nF(n + 1 + iη, 2n + 2;−2iωx0 cos2 u).

(49)

3.2.1. Schrödinger equation with Razavy-type potentials. Finkel et al [20] have noted that
the Schrödinger equation for the Razavy potential [21] is a WHE. This potential belongs
to the so-called QES potentials [21–24] for which one part of the energy spectra and the
corresponding eigenfunctions can be found exactly. The other portion is supposed to be
determined by approximation methods such as perturbation theory or semiclassical methods
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of approximation [26]. The results below suggest that, for Whittaker–Hill (or Razavy-type)
potentials, the whole spectra may be computed by the same methods applicable to the two-
centre problem or Teukolsky equations.

Then let us regard the time-independent Schrödinger equation

d2ψ

dξ 2
+ [E − V (ξ)]ψ = 0, ξ := ax, E := 2mE

h̄2a2
, (50)

where a is a constant and x is the spatial coordinate. For the potential considered by Zaslavskii
and Ulyanov [27, 28]

V (ξ) = B2

4
sinh2 ξ − B

(
s +

1

2

)
cosh ξ, (51)

whereB is a positive constant and s is any non-negative integer or half-integer, the Schrödinger
equation is clearly a WHE with ξ = 2iu. If we take x = cos2 u = cosh2(ξ/2), equation (50)
reads

x(x − 1)
d2ψ

dx2
+

(
x − 1

2

)
dψ

dx
+

[
E + B

(
s +

1

2

)

+ 2B

(
s +

1

2

)
(x − 1)− B2x(x − 1)

]
ψ = 0,

and thus we can choose

x0 = 1, iω = −B, iη = −s − 1
2 , B3 = E + B(s + 1

2 ) (52)

in the foregoing solutions to the WHE. The the signs for η and ω were chosen so as to satisfy
the boundary condition

lim
ξ→±∞

ψ = 0. (53)

For the present potential, polynomial solutions can be obtained either from the series in
hyperbolic functions or in regular confluent hypergeometric functions. The solutions in infinite
series are obtained by uniting expansions in series of hyperbolic functions with expansions in
series of irregular confluent functions, similar to the case of the radial equation of the two-
centre problem. Furthermore, we find that a polynomial solution for s = integer (s = half-
integer) corresponds to a pair of matchable expansions (in infinite series) for s �= integer
(s �= half-integer) and, in particular, for s = half-integer (s = integer). The eigenvalues for
infinite-series solutions may be computed as usual, using for example the continued-fraction
method [19, 29]. For polynomial solutions the eigenvalues follow from the determinant of a
tridiagonal matrix. Indeed, a series with three-term recurrence relations of the type

α0b1 + β0b0 = 0, αnbn+1 + βnbn + γnbn−1 = 0 (n � 1)

becomes a finite series with 0 � n � N − 1 whenever γn = 0 for n = N [3]. Then the
recurrence relations can be written as



β0 α0 0 · · · 0

γ1 β1 α1 0
...

0 γ2 β2 α2
...

γN−2 βN−2 αN−2

0 γN−1 βN−1







b0
...

bN−2

bN−1



= 0 (54)

and from this equation we can determine the eigenvalues (E) and the coefficients bn. For the
recurrence relations (32) we must substitute γ1 by γ1 + α−1 in the above matrix and, for (33),
we have the replacement β0 → β0 + α−1.



On some solutions to generalized spheroidal wave equations and applications 2893

Inserting the parameters (52) into equations (43), (45), (47) and (49), we find the solutions
as follows

ψ1 = e−(B/2) cosh ξ
∞∑
n=0

b(1)n cosh(nξ),

ψ̃1 = e−(B/2) cosh ξ
∞∑
n=0

b(1)n

(
2B cosh2 ξ

2

)n

F
(
n− s, 2n + 1; 2B cosh2 ξ

2

)
,

(55a)

where in the recurrence relations (42c) we have

α(1)n = −
B

2
(n + 1 + s), β(1)n = −n2 − E, γ (1)

n =
B

2
(n− s − 1). (55b)

If s is an integer we get two expressions for polynomial solutions (F = (−1)nM̃) with
0 � n � s seeing that γs+1 = 0. If s is not an integer (and particularly s = half-integer) we
may match the two solutions (F = U ) with different regions of convergence to get bounded
solutions convergent over the entire range 1 � x �∞. There are also similar conclusions for
the other solutions. Thus, the second pair is

ψ2 = e−(B/2) cosh ξ
∞∑
n=0

b(2)n cosh[(n + 1
2 )ξ ],

ψ̃2 = e−(B/2) cosh ξ cosh
ξ

2

∞∑
n=0

b(2)n

(
2B cosh2 ξ

2

)n

F
(
n− s +

1

2
, 2n + 2; 2B cosh2 ξ

2

)
,

(56a)

where in the recurrence relations (44c) we have

α(2)n = −
B

2

(
n +

3

2
+ s

)
, β(2)n = −(n + 1

2 )
2 − E, γ (2)

n =
B

2

(
n− s − 1

2

)
. (56b)

Then, if s = half-integer, we have two expressions for polynomial solutions (0 � n � s−1/2)
and, if s �= half-integer, we have a pair of matchable solutions. In the third pair

ψ3 = e−(B/2) cosh ξ
∞∑
n=0

b(3)n sinh[(n + 1)ξ ],

ψ̃3 = e−(B/2) cosh ξ sinh ξ
∞∑
n=0

(n + 1)b(3)n

(
2B cosh2 ξ

2

)n

F
(
n− s + 1, 2n + 3; 2B cosh2 ξ

2

)
,

(57a)

we have

α(3)n = −
B

2
(n + 2 + s), β(3)n = −(n + 1)2 − E, γ (3)

n =
B

2
(n− s), (57b)

in the recurrence relations (46c). If s = integer, we get two expressions for polynomial
solutions (0 � n � s − 1) but if s �= integer we can match the solutions in this pair. The last
pair reads

ψ4 = e−(B/2) cosh ξ
∞∑
n=0

b(4)n sinh[(n + 1
2 )ξ ],

ψ̃4 = e−(B/2) cosh ξ sinh
ξ

2

∞∑
n=0

(
n +

1

2

)
b(4)n

×
(

2B cosh2 ξ

2

)n

F
(
n− s +

1

2
, 2n + 2; 2B cosh2 ξ

2

)
,

(58a)

where in the recurrence relations (48c) we have

α(4)n = α(2)n , β(4)n = β(2)n , γ (4)
n = γ (2)

n , see equation (56b). (58b)
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If s = half-integer, both solutions (F = (−1)nM̃) are polynomial (0 � n � s − 1/2) but if
s �= half-integer the series are infinite and we can match them (F = U ).

Other Whittaker–Hill potentials can be treated in a similar way. So, the potential
investigated by Konwent et al [26]

V (ξ) = (2s + 1)2

4

(
B

2s + 1
cosh ξ − 1

)2

, B > 0, (s = 0, 1/2, 1, . . .),

can be rewritten as

V (ξ) = B2

4
sinh2 ξ − B

(
s +

1

2

)
cosh ξ +

B2

4
+

(
s +

1

2

)2

. (59)

The difference of this potential in relation to (51) consists uniquely in a shift in the energy
levels, that is, we have just to substitute E by E − B2/4 − (s + 1/2)2 in the previous results.
On the other hand, the Razavy potential [21] can be rewritten as

V (ξ) = B2

4
sinh2(2ξ)− (p + 1)B cosh(2ξ), B > 0, p = 1, 2, 3, . . . (60a)

and the Schrödinger equation is a GSWE (WHE with u = iξ ) characterized by

x = cosh2 ξ, x0 = 1, B1 = −1/2, B2 = 1,

B3 = [E + B(2s + 2)]/4, iω = ±B/2, iη = ±(s + 1),
(60b)

where s was defined byp = 2s+1 and then s = 0, 1/2, 1, 3/2, . . . . Inserting these expressions
into the solutions to the WHE, we obtain again pairs of infinite-series solutions, in addition to
the polynomials solutions obtained by Razavy.

4. Solutions for the confluent GSWE

A confluent GSWE was obtained by Leaver as a limit to the the radial Teukolsky equations
for an extreme value for the rotation parameter. More recently an equation, called generalized
WHE, has appeared which describes the radial behaviour of a charged massive scalar field on
Kerr–Newman spacetimes, in a extreme case as well (see [30], section 4). We can show that
the latter is also a confluent GSWE.

For confluent GSWEs the expansions in hypergeometric functions are not valid, but the
solution Ũ ν

1 in series of Coulomb wavefunctions affords an appropriate limit. From this limit
we get other solutions by the transformations rules t1 and t2 and again we arrive at two pairs of
solutions with a phase parameter. In section 4.1 we present such solutions and truncate them,
and in section 4.2 we discuss some examples.

4.1. The Leaver-type solutions

The first pair is given by

Uν
1 = eiωxx−ν−B2/2

∞∑
n=−∞

bn

(
B1

x

)n

F
(
n + ν +

B2

2
, 2n + 2ν + 2; B1

x

)
,

Ũ ν
1 = eiωxxν+1−B2/2

∞∑
n=−∞

bn(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx),

(61a)
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where in the recurrence relations

αn = iωB1
(n + ν + 2− (B2/2))(n + ν + 1− iη)

2(n + ν + 1)(n + ν + 3/2)
,

βn = B3 +

(
n + ν + 1− B2

2

)(
n + ν +

B2

2

)
+
ηωB1(B2/2− 1)

(n + ν)(n + ν + 1)
,

γn = iωB1
(n + ν + (B2/2)− 1)(n + ν + iη)

2(n + ν)(n + ν − 1/2)
.

(61b)

These are the Leaver solutions: Ũ ν
1 is the limit of the corresponding solution in equation (12a)

and Uν
1 results from Ũ ν

1 by the rule t1. A second pair, obtained by applying the rule t2 on this
first pair, is

Uν
2 = eiωx+(B1/x)x−ν−B2/2

∞∑
n=−∞

b′n

(
−B1

x

)n

F
(
n + ν + 2− B2

2
, 2n + 2ν + 2;−B1

x

)
,

Ũ ν
2 = eiωx+(B1/x)xν+1−B2/2

∞∑
n=−∞

b′n(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx),

(62a)

where

α′n = iωB1
(n + ν + (B2/2))(n + ν + 1− iη)

2(n + ν + 1)(n + ν + 3/2)
, β ′n = −βn,

γ ′n = iωB1
(n + ν + 1− (B2/2))(n + ν + iη)

2(n + ν)(n + ν − 1/2)
.

(62b)

In the solutions with tilde the series converge for any |x| > 0, and in the solutions without
tilde the series converge for |B1/x| > 0.

The truncation is similar to the case x0 �= 0. As a matter of fact, we could obtain the first
pair and its recurrence relations starting from the limit to Ũ1 (x0 �= 0) in equation (35a) and
the remaining ones by means of the transformation rules.

First pair. ν = B2/2− 1 in (Uν
1 , Ũ

ν
1 ).

U1 = eiωxx1−B2

∞∑
n=0

b(1)n

(
B1

x

)n

F
(
n + B2 − 1, 2n + B2; B1

x

)
,

Ũ1 = eiωx
∞∑
n=0

b(1)n (−2iωx)nF
(
n +

B2

2
+ iη, 2n + B2;−2iωx

)
,

(63a)

α(1)n = iωB1
(n + 1)(n + (B2/2)− iη)

2(n + (B2/2))(n + (B2/2) + 1/2)
,

β(1)n = B3 + n(n + B2 − 1) +
ηωB1((B2/2)− 1)

(n + (B2/2)− 1)(n + (B2/2))
,

γ (1)
n = iωB1

(n + B2 − 2)(n + (B2/2)− 1 + iη)

2(n + (B2/2)− 1)(n + (B2/2)− 3/2)
.

(63b)

Recurrence relations: equation (31) if B2 �= 1, 2; equation (32) if B2 = 1; equation (33) if
B2 = 2.
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Second pair. ν = 1− B2/2 in (Uν
2 , Ũ

ν
2 ) or (U1, Ũ1)

t2−→ (U2, Ũ2).

U2 = eiωx+B1/xx−1
∞∑
n=0

b(2)n

(
−B1

x

)n

F
(
n + 3− B2, 2n + 4− B2;−B1

x

)
,

Ũ2 = eiωx+B1/xx2−B2

∞∑
n=0

b(2)n (−2iωx)nF
(
n + 2− B2

2
+ iη, 2n + 4− B2;−2iωx

)
,

(64a)

α(2)n = iωB1
(n + 1)(n + 2− (B2/2)− iη)

2(n + 2− B2/2)(n + (5/2)− B2/2)
,

β(2)n = −B3 − (n + 1)(n + 2− B2)− ηωB1((B2/2)− 1)

(n + 1− (B2/2))(n + 2− (B2/2))
,

γ (2)
n = iωB1

(n + 2− B2)(n + 1− (B2/2) + iη)

2(n + 1− (B2/2))(n + (1/2)− (B2/2))
.

(64b)

Recurrence relations: equation (31) if B2 �= 2, 3; equation (32) if B2 = 3; equation (33) if
B2 = 2.

Third pair: (U2, Ũ2)
t1−→ (Ũ3, U3).

U3 = e−iωxx iη−B2/2
∞∑
n=0

b(3)n

(
B1

x

)n

F
(
n− iη +

B2

2
, 2n + 2− 2iη; B1

x

)
,

Ũ3 = e−iωxx1−iη−B2/2
∞∑
n=0

b(3)n (2iωx)nF(n + 1− 2iη, 2n + 2− 2iη; 2iωx),

(65a)

α(3)n = iωB1
(n + 1)(n + 2− iη − (B2/2))

2(n + 1− iη)(n− iη + (3/2))
,

β(3)n = −B3 −
(
n + 1− iη − B2

2

)(
n− iη +

B2

2

)
− ηωB1((B2/2)− 1)

(n− iη)(n + 1− iη)
,

γ (3)
n = iωB1

(n− 2iη)(n + (B2/2)− iη − 1)

2(n− iη)(n− iη − 1/2)
.

(65b)

Recurrence relations: equation (31) if iη �= 0, 1/2; equation (32) if iη = 1/2; equation (33) if
iη = 0.

These solutions may also be derived by taking ν = iη in (Uν
1 , Ũ

ν
1 ) and then using the

rule T3.

Fourth pair. (U3, Ũ3)
t2−→ (U4, Ũ4).

U4 = e−iωx+B1/xx iη−(B2/2)
∞∑
n=0

b(4)n

(
−B1

x

)n

F
(
n + 2− iη − B2

2
, 2n + 2− 2iη;−B1

x

)
,

Ũ4 = e−iωx+(B1/x)x1−iη−B2/2
∞∑
n=0

b(4)n (2iωx)nF(n + 1− 2iη, 2n + 2− 2iη; 2iωx),

(66a)

α(4)n = −iωB1
(n + 1)(n + (B2/2)− iη)

2(n + 1− iη)(n− iη + 3/2)
,

β(4)n = −B3 −
(
n + 1− iη − B2

2

)(
n− iη +

B2

2

)
− ηωB1((B2/2)− 1)

(n− iη)(n + 1− iη)
,

γ (4)
n = −iωB1

(n− 2iη)(n− (B2/2)− iη + 1)

2(n− iη)(n− iη − 1/2)
.

(66b)
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Recurrence relations: equation (31) if iη �= 0, 1/2; equation (32) if iη = 1/2; equation (33) if
iη = 0.

These solutions may be obtained, if we prefer, putting ν = iη into (Uν
2 , Ũ

ν
2 ) and then

using the rule T3.

4.2. Examples

As examples we discuss the time dependence of a massive test fermion in nonflat dust-
dominated FRW universe models (there is no free parameter in the differential equation) and
the Schrödinger equation for QES asymmetric double-Morse potentials (the energy represents
a free parameter).

4.2.1. Dirac equation in dust-dominated FRW spacetimes. For FRW universes filled with
dust the scale factor is given by A(t) = a0[1− cos(

√
ετ)]/ε. So, equation (25) for S(x) reads

d2S

dτ 2
+

[
σ 2 + iµa0

sin(
√
ετ)√
ε

+ µ2a2
0[1− cos(

√
ετ)]2

]
S = 0, (67)

which can be reduced to a confluent GSWE. In effect, the change of variable

x = e−i
√
ετ = cos

√
ετ − i sin

√
ετ (68a)

gives

x2 d2S

dx2
+ x

dS

dx
+

[
k − A1

x2
− A2

x
− A3x − A4x

2

]
S = 0, (68b)

where

k = −ε(σ 2 + 3
2µ

2a2
0), A1 = A4 = 1

4εµ
2a2

0,

A2 = −εµ2a2
0 +

√
ε

2
µa0, A3 = −εµ2a2

0 −
√
ε

2
µa0.

(68c)

The substitution

S(x) = ea/xxbU(x), a2 := A1, a − 2ab − A2 := 0, (69a)

furnishes

x2 d2U

dx2
+ [(2b + 1)x − 2a]

dU

dx
+ [−A4x

2 − A3x + k + b2]U = 0, (69b)

that is, a confluent GSWE with

B1 = −2a, B2 = 2b + 1, B3 = k + b2, ω2 = −A4 e 2ηω = A3,

or, choosing a = √A1 = µa0
√
ε/2,

B1 = −µa0
√
ε, B2 = 1 + 2µa0

√
ε, B3 = −ε(σ 2 + 1

2µ
2a2

0),

iω = ±µa0

2

√
ε, iη = ±( 1

2 + µa0
√
ε).

(69c)

Therefore, the solutions for S(x) may be obtained by means of

Sνi (x) = e−B1/(2x)x(B2−1)/2Uν
i (x), (70)
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where Uν
i (x) denotes the expansions with phase parameters given in section 4.1. Explicitly

we have

Sν1 = eiωx−(B1/2x)x−ν−1/2
∞∑

n=−∞
bn

(
B1

x

)n

F
(
n + ν +

B2

2
, 2n + 2ν + 2; B1

x

)
,

S̃ν1 = eiωx−(B1/2x)xν+1/2
∞∑

n=−∞
bn(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx),

(71a)

Sν2 = eiωx+(B1/2x)x−ν−1/2
∞∑

n=−∞
b′n

(
−B1

x

)n

F
(
n + ν + 2− B2

2
, 2n + 2ν + 2;−B1

x

)
,

S̃ν2 = eiωx+(B1/2x)xν+1/2
∞∑

n=−∞
b′n(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx).

(71b)

For ε = 1 we have |x| = |eiτ | = 1 and accordingly there is no problem about series convergence
or regularity condition; in this case we must choose one solution of each pair. Also for ε = −1
we do not have problems with respect to convergence or regularity condition as long as we
match the solutions of each pair since now 0 � |x| = |eτ | <∞.

We note here that the radial equation for the scalar field mentioned at the beginning of this
section 4 (called the generalized WHE) is

x2 d2R

dx2
+ 2x

dR

dx
+

[
(ω2 − µ2)M2x2 + 2(Aω −Mµ2)Mx

+

(
A +

B
x

)2

+ (2ω − µ2)(2M2 − e2)− 2qeMω − λ

]
R = 0, (72)

where the constants are defined in the paper by Wu and Cai [30]. Since it has the same form
as equation (68b), we may reduce it to a confluent GSWE, as we have stated elsewhere.

4.2.2. Schrödinger equation with asymmetric double-Morse potentials. We consider the
Schrödinger equation (50) for QES asymmetric double-Morse potentials. Contrary to the case
of the (symmetric) Razavy-type potentials of section 3.2.1, we find that it is not possible to
match solutions belonging to the same pair of solutions in order to get infinite-series solutions
convergent and bounded for the entire range of the independent variable. Even for polynomial
solutions there are some problems.

Let us consider the Turbiner generalized Morse potential [22, 23], whose form is

V (ξ) = k + A1e−2ξ + A2e−ξ + A3eξ + A4e2ξ , (73a)

where we suppose that A1 and A2 are positive and A2 �= ±A3. In analogy with the case of
dust-dominated FRW spacetimes, we perform the substitutions

x = eξ , ψ(ξ) = ea/xxbU(x), a2 = A1, a − 2ab − A2 = 0, (73b)

which reduce the Schrödinger equation to

x2 d2U

dx2
+ [(2b + 1)x − 2a]

dU

dx
+ [−A4x

2 − A3x + b2 + E − k]U = 0, (73c)

that is, to a confluent GSWE having

B1 = −2a, B2 = 2b + 1, B3 = E + b2 − k,

ω2 = −A4 e 2ηω = A3.
(73d)

Therefore the solutions must present the same form as in the previous example, namely,

ψi = e−B1/(2x)x(B2−1)/2Ui(x), (74)



On some solutions to generalized spheroidal wave equations and applications 2899

but now Ui(x) denotes the four pairs of solutions without phase parameters.
Now let

V (ξ) = B2

4

(
sinh ξ − C

B

)2

− B

(
s +

1

2

)
cosh ξ ; s = 0, 1/2, 1, 3/2 . . . . (75)

be the asymmetric double-Morse potential considered by Zaslavskii and Ulyanov [27, 28],
where B > 0, C > 0. It can be written as the exponential potential (73a) with

k = C2

4
− B2

8
, A1 = A4 = B2

16
,

A2 = B

4
(C − 2s − 1), A3 = −B

4
(C + 2s + 1).

The choices a = −√A1 = −B/4 and ω = i
√
A4 = iB/4 yield the parameters

B1 = B

2
, B2 = 1 + C − 2s, B3 = E +

B2

8
+ s2 − sC,

iω = −B
4
, iη = −C

2
− 1

2
− s

(76)

for the confluent GSWE. Then, using the first pair of wavefunctions, we obtain

ψ1 = e−(B/2) cosh ξ−((C/2)−s)ξ
∞∑
n=0

b(1)n

(
B

2
e−ξ

)n

F
(
n + C − 2s, 2n + C + 1− 2s; B

2
e−ξ

)
,

ψ̃1 = e−(B/2) cosh ξ+((C/2)−s)ξ
∞∑
n=0

b(1)n

(
B

2
eξ

)n

F
(
n− 2s, 2n + C + 1− 2s; B

2
eξ

)
,

(77)

with recurrence relations given by equation (31) if C �= 2s or 2s + 1, equation (32) if C = 2s,
equation (33) if C = 2s + 1 and having the coefficients

α(1)n =
B2

16

(n + 1)(n + C + 1)

(n + (C/2) + (1/2)− s)(n + (C/2) + 1− s)
,

β(1)n = −E − s(s − C)− B2

8
− n(n + C − 2s)

+
B2[C2 − (1 + 2s)2]

32(n + (C/2)− (1/2)− s)(n + (C/2) + (1/2)− s)
,

γ (1)
n =

B2

16

(n + C − 2s − 1)(n− 2s − 1)

(n + (C/2)− (1/2)− s)(n + (C/2)− 1− s)
.

(78)

If s is a non-negative integer or half-integer, we have γ2s+1 = 0, and therefore ψ̃1 with
F = (−1)nM̃ is a polynomial solution with n running from 0 to 2s. This solution holds
only when C �= integer or C = integer � 2s; for C = integer < 2s, the regular
confluent hypergeometric functions are not defined. The eigenvalues and the expansions
coefficients can be determined from equation (54). On the other hand, if s is not a non-
negative integer or half-integer both the solutions in (77), with regular or irregular confluent
hypergeometric functions, can be combined to give convergent and bounded solutions in terms
of infinite series.

For s = integer or half-integer, infinite-series wavefunctions bounded for all values of ξ
cannot be obtained by matching solutions belonging to the same pair. Such solutions would
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need to present the factor exp(−(B/2) cosh ξ) but this does not happen. Thus, from the second
pair we obtain

ψ2 = e−(B/2) sinh ξ+((C/2)−s−1)ξ
∞∑
n=0

b(2)n

×
(
B

2
e−ξ

)n

M̃

(
n + 2 + 2s − C, 2n + 3 + 2s − C;−B

2
e−ξ

)
,

ψ̃2 = e−(B/2) sinh ξ−((C/2)−s−1)ξ
∞∑
n=0

b(2)n

(
B

2
eξ

)n

U

(
n + 1− C, 2n + 3 + 2s − C; B

2
eξ

)
,

(79a)

where, in the recurrence relations, we have

α(2)n =
B2(n + 1)(n + 2 + 2s)

16(n + s − (C/2) + (3/2) + s)(n− (C/2) + 2 + s)
,

β(2)n = E + s(s − C) +
B2

8
+ (n + 1)(n + 1− C + 2s)

− B2[C2 − (1 + 2s)2]

32(n− (C/2) + (1/2) + s)(n− (C/2) + (3/2) + s)
,

γ (2)
n =

B2(n− C + 2s + 1)(n− C)

16(n− (C/2) + (1/2) + s)(n− (C/2) + s)
.

(79b)

In these two solutions we have infinite series (if C �= integer) but the solutions are unbounded
when ξ →−∞. IfC = integer, the solutionψ2 is polynomial but unbounded when ξ →−∞.
Similarly, from the third pair, we get

ψ3 = e(B/2) sinh ξ−((C/2)+s+1)ξ
∞∑
n=0

b(3)n

(
B

2
e−ξ

)n

U

(
n + 1 + C, 2n + 3 + 2s + C; B

2
e−ξ

)
,

ψ̃3 = e(B/2) sinh ξ+((C/2)+s+1)ξ
∞∑
n=0

b(3)n

(
B

2
eξ

)n

M̃

(
n + 2 + 2s + C, 2n + 3 + 2s + C;−B

2
eξ

)
,

(80a)

where, in the recurrence relations, we have

α(3)n (C, s) = α(2)n (−C, s), β(3)n (C, s) = β(2)n (−C, s),
γ (3)
n (C, s) = γ (2)

n (−C, s). (80b)

Both solutions are again given by infinite series, but now they are unbounded when ξ →∞.
Note that, for C �= integer, we could match solutions taking from the second and third pairs
but it would be necessary to show that, in both cases, each one with a different characteristic
equation, the eigenvalues converge to the same limit. It would be better to seek new solutions
for this problem. The same occurs with other potentials as, for example, the asymmetric
potential studied by Konwent et al

V (ξ) = (2s + 1)2

4

(
B

2s + 1
cosh ξ − 1

)2

+
BC

2
sinh ξ ;

CeB > 0; s = 0, 1/2, 1, 3/2, . . . ,

or the potential [24]

V (ξ) = δ2e−2ξ + 2δ(γ − 1)e−ξ − 2β(p + γ )eξ + β2e2ξ ; p = 0, 1, 2, . . . , (81a)

where we suppose that δ and β are positive and δ �= β. Thus, if in the latter case we select
a = −√A1 = −δ and iω = −√A4 = −β, we obtain

B1 = 2δ, B2 = 2γ, B3 = E +
(
γ − 1

2

)2
,

iω = −β, iη = −γ − p.
(81b)
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Then, the first pair of solutions provides

ψ1 = f +
1 (x)

∞∑
n=0

b(1)n (2δe−ξ )nF(n + 2γ − 1, 2n + 2γ ; 2δe−ξ ),

ψ̃1 = f −1 (x)

∞∑
n=0

b(1)n (2βeξ )nF(n− p, 2n + 2γ ; 2βeξ ),

f ±1 (x) := exp [−βeξ − δe−ξ ± 1
2 (1− 2γ )ξ ].

(82a)

(82b)

α(1)n = −
βδ(n + 1)(n + 2γ + p)

(n + γ )(n + γ + 1/2)
,

β(1)n = E +

(
γ − 1

2

)2

+ n(n + 2γ − 1)− 2βδ(γ + p)(γ − 1)

(n + γ − 1)(n + γ )
,

γ (1)
n = −

βδ(n + 2γ − 2)(n− p − 1)

(n + γ − 1)(n + γ − 3/2)
,

(82c)

with recurrence relations given by equation (31) if 2γ �= 1, 2, equation (32) if 2γ = 1, and
equation (33) if γ = 1.

If p is a non-negative integer we have γp+1 = 0, and therefore the solution ψ̃1 with
F = (−1)nM̃ is a regular polynomial solution with n extending from 0 to p. However, if 2γ is
zero or a negative integer, the regular hypergeometric function is not well defined. On the other
hand, if p is not a non-negative integer the solutions in (82a), both with regular or irregular
confluent hypergeometric functions, can be matched to give convergent and bounded solutions
in terms of infinite series, but only when 2γ is not zero or a negative integer. Moreover, using
the second and third pairs of solutions we may verify that (for p = integer) infinite-series
wavefunctions bounded for ξ ∈ (−∞,∞) cannot again be obtained by matching solutions
belonging to the same pair.

Finally, note that we have seen that the Schrödinger equation for the potential (73a) is
analogous to the Dirac equation (67) with ε = −1. There is also an analogue for ε = 1, given
by a periodic QES potential whose form is [31]

V (ξ) = A cos(2ξ) + B cos ξ + C sin ξ + D sin(2ξ), (83a)

that can be rewritten as

V (ξ) = A1e−2iξ + A2e−iξ + A3eiξ + A4e2iξ ,

A1 := 1
2 (A + iD), A2 := 1

2 (B + iC), A3 := A∗2, A4 := A∗1.
(83b)

Indeed, the changes of variables

x = eiξ , ψ(ξ) = ea/xxbU(x); a2 = −A1, a − 2ab + A2 = 0, (84a)

in the Schrödinger equation imply that U is ruled by

x2 d2 U

dx2
+ [(2b + 1)x − 2a]

dU

dx
+ [A4x

2 + A3x + b2 − E]U = 0, (84b)

that is, by a confluent GSWE in which

B1 = −2a, B2 = 2b + 1, B3 = b2 − E, ω2 = A4, 2ηω = −A3.

(84c)

5. Final remarks

The solutions to the GSWEs presented in this paper have been developed according to the
principles exposed in section 1. In section 2, expansions with phase parameter have been
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written as two pairs of solutions, each one having the same series coefficients and consisting
of a solution in series of hypergeometric functions, and a second one in series of Coulomb
wavefunctions. The first solution converges in any finite region of the complex plane, while the
second converges for |x| > |x0|. For the WHE, the series in hypergeometric functions reduce
to even or odd series of trigonometric (or hyperbolic) functions with a counterpart in series
of Coulomb wavefunctions. Equations for the time dependence of the Dirac test fermions in
nonflat radiation-dominated FRW spacetimes have been tranformed into Whittaker–Hill-type
equations in which all the constants are known.

In section 3 we have supposed that there is some free parameter in the GSWE, and then
the expansions found in section 2 were truncated, giving four pairs of solutions without phase
parameter. The truncation of the series in hypergeometric functions provided solutions of the
Fackerell–Crosmann type, that is, in series of Jacobi polynomials. Given one pair of solutions,
the others can be generated by means of the transformations rules T1 and T2. For the angular
two-centre problem, solutions in series of regular Coulomb wavefunctions were established,
in addition to the Baber–Hassé expansions in series of associated Legendre polynomials.
Analogously, for the angular Teukolsky equations, solutions in series of regular Coulomb
wavefunctions were obtained, in addition to the Fackerell–Crossman expansions. For the
radial two-centre problem, solutions bounded over the entire range of the radial variable were
found by matching expansions in series of irregular Coulomb wavefunctions with expansions
in series of hypergeometric functions. This procedure offers computational advantages in
relation to that used by Liu [19], since the matchable solutions are given in terms of one-sided
series without phase parameters and both solutions have the same eigenvalue equation.

Still, in section 3, the four Arscott solutions in series of trigonometric (or hyperbolic)
functions were recovered, and each of them corresponds to an expansion in series of
Coulomb wavefunctions. They were applied to formally solve the Schrödinger equation with
Razavy-type potentials. Polynomial solutions in series of hyperbolic functions and regular
Coulomb wavefunctions were found. Solutions in infinite series were composed by connecting
expansions in series of hyperbolic functions with expansions in series of irregular Coulomb
wavefunctions, similar to the case of the radial two-centre problem. These solutions in infinite
series seem to be suitable to find the complete energy spectrum without using the common
approximation methods.

To consider the WHE as a special GSWE is not a novelty (see part B of [4]). However, one
has the impression that so far this information has not been used to derive explicit solutions
to the WHE, as we have done in sections 2.2 and 3.2. The prescription for this is as follows:
find a solution for the GSWE in its general form (1), use the transformations rules given in
section 1, and then particularize the solutions to the WHE.

In section 4, we have used the transformation rule t2 to generalize the Leaver solutions
in series of Coulomb functions for confluent GSWEs. We have shown that these solutions
may be used to find the time dependence of massive Dirac test fields in dust-dominated
FRW spacetimes. The truncated solutions were applied to get polynomial solutions to
the Schrödinger equation with QES asymmetric double-Morse potentials. In this case no
satisfactory infinite-series solution were found, and the search of new solutions appropriate
for the case remains open. Note the new instances of confluent GSWE that were found in this
section: the Schrödinger equation for the potentials (73a) and (83a), the equation (67) for the
time dependence of a Dirac field in dust-dominated FRW backgrounds, and the equation (72)
for the radial dependence of a massive scalar field in Kerr–Newman spacetimes.

In the appendix we have derived the recurrence relations for the truncated expansions with
x0 �= 0. We have obtained three possibly different recurrence relations, each of them being
valid for the solutions of the WHE.
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Throughout the text we have taken several equations from mathematical physics as mere
examples. This is particularly true with respect to the equations for the time dependence
of Dirac test fermions in FRW backgrounds inasmuch as we have not written explicitly the
solutions for S(τ) and T (τ). To solve these equations, in addition to considering the regularity
and convergence conditions, we need to find four independent sets of solutions and check
if they satisfy the requirements of ‘charge conjugation’, since the Dirac equation in FRW
spacetimes is invariant under such an operation.

We have not examined the integral relationships which may exist between solutions with
the same recurrence relations either. In effect, Masuda and Susuki [11] found that Otchik-
type solutions in series of hypergeometric and Coulomb wavefunctions are related by means
of integral transformations. Thus, we can extend that study to the generalized solutions
investigated here and, in particular, to the truncated solutions. This extension might also
include solutions of Jaffè and Hilleraas type for which Leaver found integral relations only for
special values of the parameter η [1].

Another open issue concerns the generalization of the expansions in series of Coulomb
wavefunctions to a Heun differential equation in its general form, as well as the possibility
of getting pairs constituted by such expansions and expansions in hypergeometric functions,
as in the case of GSWEs. Actually, we know that there are QES potentials which lead to
general Heun equations [32] and, if that generalization is possible, perhaps we could also
find infinite-series solutions appropriate for these problems. A further question refers to the
connections between the Schrödinger equation for other QES potentials and the Heun equation
or its special cases. We advance that, for the trigonometric and hyperbolic potentials of [24,31],
the Schrödinger equation may be transformed into GSWEs, and for this reason it has the pairs
of solutions found in section 3.1 as candidates for polynomial and infinite-series solutions.
Nevertheless, it is also necessary to consider other classes of QES potentials.

Appendix A. Truncation and recurrence relations

Let us see how we have obtained the first pair of solutions (U1, Ũ1). For n � 0 the solution
Uν

1 reads

Uν
1 = eiωx

∞∑
n=0

bnF

(
B2

2
− n− ν − 1, n + ν +

B2

2
;B2 +

B1

x0
; x − x0

x0

)
, (A.1)

which, when inserted into equation (1), gives

α−1b0F

(
B2

2
− ν,

B2

2
+ ν − 1;B2 +

B1

x0
; y

)

+ (α0b1 + β0b0)F

(
B2

2
− ν − 1,

B2

2
+ ν;B2 +

B1

x0
; y

)

+ (α1b2 + β1b1 + γ1b0)F

(
B2

2
− ν − 2,

B2

2
+ ν + 1;B2 +

B1

x0
; y

)

+
∞∑
n=2

(αnbn+1 + βnbn + γnbn−1)

× F

(
B2

2
− n− ν − 1, n + ν +

B2

2
;B2 +

B1

x0
; y

)
= 0 (A.2)

where y = (x0 − x)/x0. The parameter ν must be chosen so that the coefficients of each
independent term vanish. Whenever α−1 = 0 we have the recurrence relations (31) but there
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are cases in which α−1 is not zero, as the right-hand side of the following expression suggests
α−1

iωx0
= (ν + 1− (B2/2))(ν − (B1/x0)− (B2/2))(ν − iη)

2ν(ν + 1/2)
:


ν = (B2/2)− 1; α−1 = 0 if B2 �= 1, 2;
ν = (B1/x0) + (B2/2); α−1 = 0 if (B1/x0) + (B2/2) �= 0, 1

2 ;
ν = iη; α−1 = 0 if iη �= 0,− 1

2 .

In effect we see that there are three possible choices for ν and in each of them there are two
exceptions for which α−1 may not vanish. Hereafter we discard the possibility ν = iη because
it does not lead to solutions in terms of Jacobi’s polynomials. For the exceptions we find two
dependent terms in equation (A.2). Considering the possibility ν = B2/2 − 1, we obtain the
solution U1 with the recurrence relations (31), when B2 �= 1, 2. If B2 = 1 (ν = −1/2),
equation (A.2) becomes

α−1b0F

(
1,−1; 1 +

B1

x0
; y

)
+ (α0b1 + β0b0)F

(
0, 0; 1 +

B1

x0
; y

)

+ (α1b2 + β1b1 + γ1b0)F

(
−1, 1; 1 +

B1

x0
; y

)
+ · · · = 0.

As the first and the third terms are linearly dependent, we get the recurrence relations (32). On
the other hand, if B2 = 2 (ν = 0) we have

α−1b0F

(
1, 0; 2 +

B1

x0
; y

)
+ (α0b1 + β0b0)F

(
0, 1; 2 +

B1

x0
; y

)

+ (α1b2 + β1b1 + γ1b0)F

(
−1, 2; 2 +

B1

x0
; y

)
+ · · · = 0.

Since the first and the second terms are constant, the recurrence relations have the form given
in (33). Therefore, we have derived the solution U1. Now let us consider the solution Ũ ν

1 for
n � 0

Ũ ν
1 = eiωx(x − x0)

ν+1−(B2/2)
∞∑
n=0

b̃n(−2iωx)nF(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx). (A.3)

If F(an, bn; z) = U(an, bn; z) we get

α−1(−2iωx)−1b0U(ν + iη, 2ν;−2iωx) + (α0b1 + β0b0)U(ν + 1 + iη, 2ν + 2;−2iωx)

+ (α1b2 + β1b1 + γ1b0)(−2iωx)U(ν + 2 + iη, 2ν + 4;−2iωx)

+
∞∑
n=2

(αnbn+1 + βnbn + γnbn−1)(−2iωx)n

×U(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx) = 0. (A.4)

In order to obtain the solution Ũ1, the counterpart for U1, we again choose ν = B2/2− 1. To
find the recurrence relations for B2 = 1 and B2 = 2 we use [12]

U(a, 1− n; z) = znU(a + n, 1 + n, z)

that implies

U(iη − 1
2 ,−1;−2iωx) = (2iωx)2U(iη + 3

2 , 3;−2iωx),

U(iη, 0;−2iωx) = −2iωxU(iη + 1, 2;−2iωx).

Then, for B2 = 1 (ν = −1/2) we have

α−1(−2iωx)−1b0U(iη − 1
2 ,−1;−2iωx) + (α0b1 + β0b0)U(iη + 1

2 , 1;−2iωx)

+ (α1b2 + β1b1 + γ1b0)(−2iωx)U(iη + 3
2 , 3;−2iωx) + · · · = 0,
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and the first and the third terms are linearly dependent giving the equation (32). For B2 = 2
(ν = 0) we get

α−1(−2iωx)−1b0U(iη, 0;−2iωx) + (α0b1 + β0b0)U(1 + iη, 2;−2iωx)

+ (α1b2 + β1b1 + γ1b0)(−2iωx)U(2 + iη, 4;−2iωx) + · · · = 0,

and we see that the first and the second terms are linearly dependent; this leads to the recurrence
relations given by equation (33). To complete the derivation of the pair (U1, Ũ1) we must still
suppose that F(an, bn; z) = (−1)nM̃(an, bn; z) in equation (A.3). Instead of equation (A.4)
we have

α−1(2iωx)−1b0M̃(ν + iη, 2ν;−2iωx) + (α0b1 + β0b0)M̃(ν + 1 + iη, 2ν + 2;−2iωx)

+ (α1b2 + β1b1 + γ1b0)(2iωx)M̃(ν + 2 + iη, 2ν + 4;−2iωx)

+
∞∑
n=2

(αnbn+1 + βnbn + γnbn−1)(2iωx)n

×M̃(n + ν + 1 + iη, 2n + 2ν + 2;−2iωx) = 0.

The results are the same as in the previous case, the only technical difference being that to find
the recurrence relations for B2 = 1 and B2 = 2 we must use [16]

lim
b→1−n

M(a, b; z)
�(b)

= �(a + n)

�(a)�(n + 1)
znM(a + n, 1 + n; z)

which yields

lim
b→−1

M̃(iη − 1/2, b;−2iωx) = (2iωx)2M̃(iη + 3/2, 3;−2iωx),

lim
b→0

M̃(iη, b;−2iωx) = (2iωx)M̃(1 + iη, 2;−2iωx).
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